Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(9)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34579374

RESUMEN

Climate extremes are becoming more frequent with global climate change and have the potential to cause major ecological regime shifts. Along the northern Gulf of Mexico, a coastal wetland in Texas suffered sudden vegetation dieback following an extreme precipitation and flooding event associated with Hurricane Harvey in 2017. Historical salt marsh dieback events have been linked to climate extremes, such as extreme drought. However, to our knowledge, this is the first example of extreme precipitation and flooding leading to mass mortality of the salt marsh foundation species, Spartina alterniflora. Here, we investigated the relationships between baseline climate conditions, extreme climate conditions, and large-scale plant mortality to provide an indicator of ecosystem vulnerability to extreme precipitation events. We identified plant zonal boundaries along an elevation gradient with plant species tolerant of hypersaline conditions, including succulents and graminoids, at higher elevations, and flood-tolerant species, including S. alterniflora, at lower elevations. We quantified a flooding threshold for wetland collapse under baseline conditions characterized by incremental increases in flooding (i.e., sea level rise). We proposed that the sudden widespread dieback of S. alterniflora following Hurricane Harvey was the result of extreme precipitation and flooding that exceeded this threshold for S. alterniflora survival. Indeed, S. alterniflora dieback occurred at elevations above the wetland collapse threshold, illustrating a heightened vulnerability to flooding that could not be predicted from baseline climate conditions. Moreover, the spatial pattern of vegetation dieback indicated that underlying stressors may have also increased susceptibility to dieback in some S. alterniflora marshes.Collectively, our results highlight a new mechanism of sudden vegetation dieback in S. alterniflora marshes that is triggered by extreme precipitation and flooding. Furthermore, this work emphasizes the importance of considering interactions between multiple abiotic and biotic stressors that can lead to shifts in tolerance thresholds and incorporating climate extremes into climate vulnerability assessments to accurately characterize future climate threats.

2.
Ann Bot ; 125(2): 365-376, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31532484

RESUMEN

BACKGROUND AND AIMS: Coastal wetlands have evolved to withstand stressful abiotic conditions through the maintenance of hydrologic feedbacks between vegetation production and flooding. However, disruption of these feedbacks can lead to ecosystem collapse, or a regime shift from vegetated wetland to open water. To prevent the loss of critical coastal wetland habitat, we must improve understanding of the abiotic-biotic linkages among flooding and wetland stability. The aim of this research was to identify characteristic landscape patterns and thresholds of wetland degradation that can be used to identify areas of vulnerability, reduce flooding threats and improve habitat quality. METHODS: We measured local- and landscape-scale responses of coastal wetland vegetation to flooding stress in healthy and degrading coastal wetlands. We hypothesized that conversion of Spartina patens wetlands to open water could be defined by a distinct change in landscape configuration pattern, and that this change would occur at a discrete elevation threshold. KEY RESULTS: Despite similarities in total land and water cover, we observed differences in the landscape configuration of vegetated and open water pixels in healthy and degrading wetlands. Healthy wetlands were more aggregated, and degrading wetlands were more fragmented. Generally, greater aggregation was associated with higher wetland elevation and better drainage, compared with fragmented wetlands, which had lower elevation and poor drainage. The relationship between vegetation cover and elevation was non-linear, and the conversion from vegetated wetland to open water occurred beyond an elevation threshold of hydrologic stress. CONCLUSIONS: The elevation threshold defined a transition zone where healthy, aggregated, wetland converted to a degrading, fragmented, wetland beyond an elevation threshold of 0.09 m [1988 North American Vertical Datum (NAVD88)] [0.27 m mean sea level (MSL)], and complete conversion to open water occurred beyond 0.03 m NAVD88 (0.21 m MSL). This work illustrates that changes in landscape configuration can be used as an indicator of wetland loss. Furthermore, in conjunction with specific elevation thresholds, these data can inform restoration and conservation planning to maximize wetland stability in anticipation of flooding threats.


Asunto(s)
Ecosistema , Humedales , Conservación de los Recursos Naturales , Poaceae
3.
Glob Chang Biol ; 24(11): 5361-5379, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29957880

RESUMEN

Coastal wetlands are among the most productive and carbon-rich ecosystems on Earth. Long-term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 estuaries that span broad temperature and precipitation gradients. Our results highlight the importance of climate-plant controls and indicate that the influence of elevation is scale and location dependent. Coastal wetland plants are sensitive to climate change; small changes in temperature or precipitation can transform coastal wetland plant communities. Across the region, SOM was greatest in mangrove forests and in salt marshes dominated by graminoid plants. SOM was lower in salt flats that lacked vascular plants and in salt marshes dominated by succulent plants. We quantified strong relationships between precipitation, salinity, plant productivity, and SOM. Low precipitation leads to high salinity, which limits plant productivity and appears to constrain SOM accumulation. Our analyses use data from the Gulf of Mexico, but our results can be related to coastal wetlands across the globe and provide a foundation for predicting the ecological effects of future reductions in precipitation and freshwater availability. Coastal wetlands provide many ecosystem services that are SOM dependent and highly vulnerable to climate change. Collectively, our results indicate that future changes in SOM and plant productivity, regulated by cascading effects of precipitation on freshwater availability and salinity, could impact wetland stability and affect the supply of some wetland ecosystem services.


Asunto(s)
Carbono/metabolismo , Cambio Climático , Fenómenos Fisiológicos de las Plantas , Suelo/química , Humedales , Secuestro de Carbono , Ecosistema , Agua Dulce , Salinidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...